Weiter zum Inhalt

Das Programm der KIDA-KON 2025

ZEITPROGRAMM
09:00Registrierung & Thünen-Führung
10:00Begrüßung 
10:30Keynote 1
11:10Kaffeepause
Session 1 | LLM applications in food & health risk assessment
11:40Information extraction for mechanistic toxicology using LLMs
Aileen Bahl | Bundesinstitut für Risikobewertung
12:00Implementation of AI-based support systems in the risk assessment of recipient and donor organisms for genetic engineering operations
André Friedrich | Bundesamt für Verbraucherschutz und Lebensmittelsicherheit
12:20Benchmarking AI-systems on research-related information extraction tasks
Axel Menning | Bundesinstitut für Risikobewertung
12:40Mittagspause
13:40Postersession
14:40Kaffeepause 
Session 2 | AI and remote sensing in agriculture
15:10Advancing agricultural monitoring: A modular and scalable ML framework for crop phenology analysis with remote sensing data
Jennifer McClelland | Julius Kühn-Institut 
15:30Semantic segmentation of multitemporal very high-resolution satellite imagery for nation-wide hedgerow identification
Javier Muro | Thünen-Institut
15:50Earth observation and deep learning for area-wide mapping of agricultural land use and habitat diversity in Germany
Gideon Okpoti Tetteh | Thünen-Institut
16:10Challenges of AI-based methods for spot- / site-specific spraying
Stefan Paulus | Institut für Zuckerrübenforschung
16:30Kaffeepause
Podiumsdiskussion
17:00Birgit Kleinschmit | Thünen-Institut
Engel Arkenau | Bundesministerium für Landwirtschaft, Ernährung und Heimat
18:30Abendprogramm

 

ZEITPROGRAMM
08:35Keynote 2
Session 3 | Predictive modeling in economics and trade
09:15Predicting volatile energy prices
Annemarie Kronhardt | Deutsches Biomasseforschungszentrum
09:35An evaluation of gravity models and artificial neuronal networks on bilateral trade flows in wood markets
Christian Morland | Thünen-Institut
09:55Kaffeepause
Session 4 | Environmental monitoring
11:05Towards reliable soil horizon classification: A multimodal approach leveraging hierarchical taxonomy and graph-based representations
Teodor Chiaburu | Berliner Hochschule für Technik
11:25Efficient seasonal hydrological prediction with hydracastAI
David Mengen | Forschungszentrum Juelich
11:45Ground-truthing of satellite-based forest condition products using precise tree positions
Amelie McKenna | Thünen-Institut
12:05From study areas to a nationwide forest monitoring: roll-out in Germany in progress
Jonathan Wolf | Thünen-Institut
12:25Mittagspause
Session 5 | AI for livestock & marine populations
13:30Detection of common starfish in underwater images from Sylt outer reef using YOLOv8
Carsten Meyer | Ostfalia Hochschule für Angewandte Wissenschaften
13:50AlphaFold-driven structural optimization of ligninase for enhanced lignocellulose degradation in transgenic livestock
Aseem Tara | Friedrich-Löffler-Institut
14:10Smart farming in action: Evaluating AI weight sensors for health and profitability in pig production
Mavis Boimah | Thünen-Institut
14:30Verabschiedung
15:00Ende der Veranstaltung

 

Ergänzend zum Vortragsprogramm werden auf der KIDA-KON 2025 zahlreiche Poster mit inspirierenden Inhalten zu sehen sein. Die Posterausstellung findet in den Veranstaltungsräumlichkeiten statt. Die Posterausstellenden möchten mit den Teilnehmenden ins Gespräch kommen und sich zu den Inhalten austauschen. Folgende Poster werden ausgestellt:

Poster-nummerPostertitelPosterreferent
01Advancing Landscape Monitoring: A Modular and Scalable ML Framework for Woody Vegetation identification with Remote Sensing DataJennifer McClelland
02Does implementation of machine learning algorithms in land use 
Modelling enhance allocation accuracy?
Simon Thomsen
03How can a machine-learning system be trained to distinguish 
between softwoods even though the characteristics are 
Particularly similar?
Jördis Siedburg-Rockel
04A Gamification-Based Approach for Stakeholder Engagement 
Using Artificial Intelligence
Alia Spode
05Reinforcement Learning in human and veterinary medicine – a systematic reviewDeliah Tamsyn Winterfeld
06Vegetation indices and wavelengths selection to detect pest symptoms on tomato leaves Yukiko Nakamura
07Concept and implementation of a mobile data acquisition system for obtaining research dataKersin Wurdinger
08An ontology for classifying biogenic residues in GermanyKim Schmidt
09Enhancing Human-Machine Interaction Towards More Effective and Practical AI-based Otolith AnalysesArjay Cayetano
10BETTER-WEEDSMartin Rabe
11Harnessing Machine Learning for Multi-Scale Soil Health Insights: From National Mapping to Continental TrendsAli Sakhaee
12Digital Twins for the Environment – An Example for the MaschseeChristoph Manß
13How data-driven space-for-time approaches can help to estimate long-term effects of humans on soil healthFlorian Schneider
14Leveraging Sentinel-1 SAR and AI for High-Resolution Crop Phenology MonitoringTanja Riedel
15Hyperspectral imaging for detection of pests and pathogens symptoms in greenhouse tomato cultivation: The EMSig ProjectNiels Lakämper
16Self-Supervised Learning for European-Scale Crop Classification Using the LUCAS DatasetStefan Stiller
17In the beginning there was complex data…Fabian Billenkamp
18Digitalization and Automation of Technical Infrastructure in Biorefineries ResearchIsis Paola Núñez Franco

 

Nach oben